Protein Kinase G Iα Inhibits Pressure Overload–Induced Cardiac Remodeling and Is Required for the Cardioprotective Effect of Sildenafil In Vivo

نویسندگان

  • Robert M. Blanton
  • Eiki Takimoto
  • Angela M. Lane
  • Mark Aronovitz
  • Robert Piotrowski
  • Richard H. Karas
  • David A. Kass
  • Michael E. Mendelsohn
چکیده

BACKGROUND Cyclic GMP (cGMP) signaling attenuates cardiac remodeling, but it is unclear which cGMP effectors mediate these effects and thus might serve as novel therapeutic targets. Therefore, we tested whether the cGMP downstream effector, cGMP-dependent protein kinase G Iα (PKGIα), attenuates pressure overload-induced remodeling in vivo. METHODS AND RESULTS The effect of transaortic constriction (TAC)-induced left ventricular (LV) pressure overload was examined in mice with selective mutations in the PKGIα leucine zipper interaction domain. Compared with wild-type littermate controls, in response to TAC, these Leucine Zipper Mutant (LZM) mice developed significant LV systolic and diastolic dysfunction by 48 hours (n=6 WT sham, 6 WT TAC, 5 LZM sham, 9 LZM TAC). In response to 7-day TAC, the LZM mice developed increased pathologic hypertrophy compared with controls (n=5 WT sham, 4 LZM sham, 8 WT TAC, 11 LZM TAC). In WT mice, but not in LZM mice, phosphodiesterase 5 (PDE5) inhibition with sildenafil (Sil) significantly inhibited TAC-induced cardiac hypertrophy and LV systolic dysfunction in WT mice, but this was abolished in the LZM mice (n=3 WT sham, 4 LZM sham, 3 WT TAC vehicle, 6 LZM TAC vehicle, 4 WT TAC Sil, 6 LZM TAC Sil). And in response to prolonged, 21-day TAC (n=8 WT sham, 7 LZM sham, 21 WT TAC, 15 LZM TAC), the LZM mice developed markedly accelerated mortality and congestive heart failure. TAC induced activation of JNK, which inhibits cardiac remodeling in vivo, in WT, but not in LZM, hearts, identifying a novel signaling pathway activated by PKGIα in the heart in response to LV pressure overload. CONCLUSIONS These findings reveal direct roles for PKGIα in attenuating pressure overload-induced remodeling in vivo and as a required effector for the cardioprotective effects of sildenafil.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Screen Identifies Cardiac Myosin-Binding Protein-C as a Protein Kinase G-Iα Substrate.

BACKGROUND Pharmacological activation of cGMP-dependent protein kinase G I (PKGI) has emerged as a therapeutic strategy for humans with heart failure. However, PKG-activating drugs have been limited by hypotension arising from PKG-induced vasodilation. PKGIα antiremodeling substrates specific to the myocardium might provide targets to circumvent this limitation, but currently remain poorly unde...

متن کامل

Protein kinase G I alpha activates an anti-remodeling signaling pathway in the heart via an interaction with the MAPKKK mixed lineage kinase 3

Background cGMP signaling inhibits pathologic cardiac hypertrophy and remodeling in vivo. In prior studies, we explored the role of the cGMP-dependent protein kinase I alpha (PKGIa) in regulating cardiac remodeling by studying mice with mutations in the PKGIa leucine zipper (LZ) domain [1], in which PKGIa kinase activity is retained but LZ-mediated protein-protein interactions are abolished. Th...

متن کامل

PDE5 inhibitor efficacy is estrogen dependent in female heart disease.

Inhibition of cGMP-specific phosphodiesterase 5 (PDE5) ameliorates pathological cardiac remodeling and has been gaining attention as a potential therapy for heart failure. Despite promising results in males, the efficacy of the PDE5 inhibitor sildenafil in female cardiac pathologies has not been determined and might be affected by estrogen levels, given the hormone's involvement in cGMP synthes...

متن کامل

Metalloproteinases, Mechanical Factors and Vascular Remodeling

Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...

متن کامل

Regulator of G-Protein Signaling 10 Negatively Regulates Cardiac Remodeling by Blocking Mitogen-Activated Protein Kinase-Extracellular Signal-Regulated Protein Kinase 1/2 Signaling.

Regulator of G-protein signaling 10 (RGS10) is an important member of the RGS family and produces biological effects in multiple organs. We used a genetic approach to study the role of RGS10 in the regulation of pathological cardiac hypertrophy and found that RGS10 can negatively influence pressure overload-induced cardiac remodeling. RGS10 expression was markedly decreased in failing human hea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2012